All About Knapsack Problem | python

All About Knapsack Problem | python

The knapsack problem is a problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine the number of each item included in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.

Types of knapsack problem:

  • 0-1 Knapsack Problem

    • for recursive solution time Complexity - O(2^n)

    • using dp time complexity is O(nW) where "W" is capacity and "n" in no. of the item -using DP

  • Unbounded Knapsack (Repetition of items allowed) Θ((W+1)*N)

  • fractional knapsack problem O(nlogn)

Given knapsack

Screenshot (2).png

variables used

wt = [10,40,20,30]
val = [60,40,100,120]
capacity = 50

0-1 knapsack problem (Unbounded Knapsack (Repetition of items not allowed)

### 0-1 Knapsack Problem
## recursive solution time Complexity - O(2^n)

def zeroOneKnapsackRec(index,wt,val,capacity):
    # base condition
    if capacity == 0 or index == 0:
        return 0
    elif wt[index-1] > capacity:
        return zeroOneKnapsackRec(index-1,wt,val,capacity)
    else:
        # if we take or leave
        return max(val[index-1]
                   + zeroOneKnapsackRec(index-1,wt,val,capacity-wt[index-1]),  # taking element
                   zeroOneKnapsackRec(index-1,wt,val,capacity)  # leaving element
                    )
zeroOneKnapsackRec(len(wt),wt,val,capacity)

Output: 220

now using dp on a recursive solution

Type of dynamic programming approach

  • top-down approach( Memoization Technique (an extension of recursive approach) )

  • bottom-up approach

# Memoization Technique ... 

# Time Complexity: O(number of items*capacity).

# we have taken capacity and weigth because both variables are changing
dp = [[None for i in range(capacity + 1)] for j in range(len(wt) + 1)]  ## array to store recursive call or for Memoization

def zeroOneKnapsackMemoization(index,wt,val,capacity):
    # base condition
    if capacity == 0 or index == 0:
        return 0

    if dp[index][capacity] is not None:
        return dp[index][capacity]
    else:    
        if wt[index-1] > capacity:
            dp[index][capacity] = zeroOneKnapsackRec(index-1,wt,val,capacity)
            return dp[index][capacity]
        else:
            dp[index][capacity] =  max(val[index-1] \
                        + zeroOneKnapsackRec(index-1,wt,val,capacity-wt[index-1]) ,\
                                zeroOneKnapsackRec(index-1,wt,val,capacity-wt[index-1]))

            return dp[index][capacity]

zeroOneKnapsackMemoization(len(wt),wt,val,capacity)

Output: 220

def topDownKnapsack(wt,val,capacity):
    dp = [[0 for i in range(capacity+1)] for j in range(len(wt)+1)]
    for i in range(len(wt)+1):
        for j in range(capacity+1):
            if i == 0 or j == 0:
                dp[i][j] = 0
            elif wt[i-1] <= j:
                dp[i][j] = max(
                    val[i - 1] + dp[i - 1][j - wt[i - 1]],
                               dp[i - 1][j])      
            else:
                 dp[i][j] = dp[i - 1][j]

    return dp

print("ans :",topDownKnapsack(wt,val,capacity)[len(wt)][capacity])

# to see dp table
from pandas import *
matrix = topDownKnapsack(wt,val,capacity)
df = DataFrame(matrix)
print(df)

Output: ans : 220

Table formed :

    0    1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44    45    46    47    48    49    50
0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
1    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60
2    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    60    100
3    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    100    100    100    100    100    100    100    100    100    100    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160    160
4    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    100    100    100    100    100    100    100    100    100    100    160    160    160    160    160    160    160    160    160    160    180    180    180    180    180    180    180    180    180    180    220

Unbounded Knapsack (Repetition of items allowed)

def recursiveUnboundedKnapsack(val, wt, W, n):
    """
    W = capacity,
    n = index
    """
    if n == 0 or W == 0:
        return 0
    elif wt[n - 1] > W:
        return recursiveUnboundedKnapsack(val, wt, W, n-1)
    else:
        return max(
            val[n - 1] + recursiveUnboundedKnapsack(val, wt, W - wt[n - 1], n),
            recursiveUnboundedKnapsack(val, wt, W, n-1),
        )
print(recursiveUnboundedKnapsack(val, wt, capacity, len(wt)))

Output: 300

def unboundedKnapsackDp(val, wt, W, n):
    """
    W = capacity,
    n = index
    """
    dp = [[0 for _ in range(W + 1)] for _ in range(n + 1)]

    for i in range(n + 1):
        for j in range(W + 1):
            if i == 0 or j == 0:
                dp[i][j] = 0
            elif wt[i - 1] > j:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(val[i - 1] + dp[i][j - wt[i - 1]], dp[i - 1][j])
    return dp

print("ans :",unboundedKnapsackDp(val, wt, capacity, len(wt))[len(wt)][capacity])

# to see dp table
from pandas import *
matrix = unboundedKnapsackDp(val, wt, capacity, len(wt))
df = DataFrame(matrix)
print(df)

Output: ans : 300 Table formed :

    0    1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44    45    46    47    48    49    50
0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0
1    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    120    120    120    120    120    120    120    120    120    120    180    180    180    180    180    180    180    180    180    180    240    240    240    240    240    240    240    240    240    240    300
2    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    120    120    120    120    120    120    120    120    120    120    180    180    180    180    180    180    180    180    180    180    240    240    240    240    240    240    240    240    240    240    300
3    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    120    120    120    120    120    120    120    120    120    120    180    180    180    180    180    180    180    180    180    180    240    240    240    240    240    240    240    240    240    240    300
4    0    0    0    0    0    0    0    0    0    0    60    60    60    60    60    60    60    60    60    60    120    120    120    120    120    120    120    120    120    120    180    180    180    180    180    180    180    180    180    180    240    240    240    240    240    240    240    240    240    240    300

fractional knapsack problem (greedy approach)

class item(object):
    """ class to store item """
    def __init__(self,wt,val,index):
        self.wt = wt
        self.val = val
        self.index = index
        self.cost = val // wt
    def __lt__(self, other):
        return self.cost < other.cost

class build_item_list:
    """ class to build item list """
    def __init__(self,wt_list,val_list):
        self.wt_list = wt_list
        self.val_list = val_list
    def build(self):
        item_list = []
        for index in range(len(self.wt_list)):
            item_list.append(item(self.wt_list[index],self.val_list[index],index))
        return item_list

class FractionalKnapSack(object):
    """ knapsack sol class """
    def __init__(self,wt_list,val_list,capacity):
        # Builder design pattern
        self.item_list = build_item_list(wt_list,val_list).build()
        self.capacity = capacity
        self.totalValue = 0
        self.totalValue = self.getMaxValue()   

    def getMaxValue(self):
        """ function return max val a knapsack can hold"""
        self.item_list.sort(reverse=True)
        for i in self.item_list:
            curWt = int(i.wt)
            curVal = int(i.val)
            if self.capacity - curWt >= 0:
                self.capacity -= curWt
                self.totalValue += curVal
            else:
                fraction = self.capacity / curWt
                self.totalValue += curVal * fraction
                self.capacity = int(self.capacity - (curWt * fraction))
                break
        return self.totalValue

    def __repr__(self):
        return f" Total value of knapsack is {self.totalValue}"

    def __str__(self):
        return f" Total value of knapsack is {self.totalValue}"

print(FractionalKnapSack(wt,val,capacity))

Output: Total value of knapsack is 240.0

Did you find this article valuable?

Support Vinayak's Blog by becoming a sponsor. Any amount is appreciated!